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Abstract

This article describes the development of a real-time model-based training system that pro-
vides adaptive ‘‘over-the-shoulder’’ (OTS) instructions to trainees as they learn to perform an
Anti-Air Warfare Coordinator (AAWC) task. The long-term goal is to develop a system that
will provide real-time instructional materials based on learners’ actions, so that eventually the
initial set of instructions on a task can be strengthened, complemented, or overridden at dif-
ferent stages of training. The training system is based on the ACT-R architecture, which serves
as the theoretical background for the cognitive model that monitors the learning process of the
trainee. An experiment was designed to study the impact of OTS instructions on learning.
Results showed that while OTS instructions facilitated short-term learning, (a) they took time
away from the processing of current information, (b) their effects tended to decay rapidly in
initial stages of training, and (c) their effects on training diminished when the OTS instructions
were proceduralized in later stages of training. A cognitive model that learned from both the
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upfront and OTS instructions was created and provided good fits to the learning and perfor-
mance data collected from human participants. Our results suggest that to fully capture the
symbiotic performance between humans and intelligent training systems, it is important to
closely monitor the learning process of the trainee so that instructional interventions can be
delivered effectively at different stages of training. We proposed that such a flexible system
can be developed based on an adaptive cognitive model that provides real-time predictions
on learning and performance.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Model-based training system; Cognitive model; Skill acquisition; Training; ACT-R; Model
tracing; Augmented cognition

1. Introduction

There has been a long history of research in cognitive psychology that studies
human skill acquisition in a variety of contexts. Unfortunately, there is still a gap
between laboratory research in cognitive psychology and many real-world concerns
on training, such as how to derive the most effective set of instructions, how to facil-
itate knowledge acquisition in various stages of training, or how to maintain the
same level of performance over time in different problems or situations. As Newell
(1973) lamented, research in cognitive psychology has failed to provide a character-
ization that integrates various components in human cognition. Such integration is
essential for many real-world applications. Newell proposed the concept of a cogni-
tive architecture as a solution to the issue of integration. Cognitive architectures are
computational systems that integrate different aspects of the human cognitive sys-
tem, such as perception, attention, and memory, so that cognitive models can be con-
structed based on the architecture to produce coherent human behavior in different
tasks. Cognitive architectures can also be used as a theoretical basis for the develop-
ment of intelligent training systems. The idea is that training materials should be
designed with reference to a cognitive model of competence that the trainee is being
asked to learn. This means that the cognitive model should keep track of the learning
process and the various cognitive states in real time, and inform the training system
to deliver training material in ways that facilitate the effectiveness of training. The
coupling of cognitive models and intelligent training systems can therefore greatly
enhance the symbiotic interactions between humans and intelligent systems.

This article focuses on the development of a computerized model-based training
system based on the ACT-R 5.0 architecture (Anderson et al., 2004). As a first step
towards this goal, we will describe an experiment and a model of how people learned
from ‘‘over-the-shoulder’’ instructions as they played the role of an Anti-Air War-
fare Coordinator (AAWC). The goals of the experiment are to show that the impact
of these over-the-shoulder (OTS) instructions varies at different stages of training in
a highly interactive and dynamic problem-solving task, and to provide data to test
the validity of the model that captures the learning process. The long-term goal is
to develop a system that will provide real-time adaptive feedback on participants’
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actions, so that eventually the initial set of instructions on a task can be strength-
ened, complemented, or overridden at different stages of training. To preview our
results, we found that OTS instructions had different short-term and long-term
effects on training effectiveness at different stages of training. We concluded that
to fully capture the symbiotic performance between humans and intelligent training
systems, it is important to have a flexible system that adapts to the learning process
of the trainee, so that OTS instructions can be effectively delivered to maximize their
effects on training.

In the next section, we will first provide a brief review of model-based training sys-
tems and various cognitive theories behind these systems. We will then describe the
ACT-R architecture that serves as the theoretical basis of our system. We then pro-
vide a description of the current status of the real-time model-based training system,
discuss the details of the AAWC task, and how OTS instructions are generated from
the system for this task. Finally, we present details of an experiment that tested the
impact of OTS instruction at different stages of learning, and the implications on the
design of systems that attempt to capture, assess, and evaluate skilled and symbiotic
performance between humans and intelligent training systems.

2. Model-based training systems

There has been a long history of applying cognitive theory of learning and skill
acquisition to model-based training systems (e.g., Anderson et al., 1995; Graesser
et al., 2004; Hill and Johnson, 1993; Sleeman and Brown, 1982). The key idea of a
model-based training system is that instructions should be given based on a cognitive
model of the competence that the trainee is being asked to learn. In other words, the
cognitive model should incorporate the underlying skills that allow the model to per-
form the task the trainee is expected to perform. Based on the model, the system can
monitor actions of the trainee and infer the intentions of the trainee by mapping
actions of the trainee to components of the model. In other words, a model of com-
petence provides an explanation of actions as trainees interact with the system.
Immediate feedback or real-time instructions can then be given to the trainee to facil-
itate learning.

Many cognitive theories have been implemented as computational cognitive mod-
els to predict performance during learning and skill acquisition. One of the most
studied theories of skill acquisition is the ACT* theory, which has been applied to
training systems in Lisp programming, algebra, and geometry (see Anderson
et al., 1995). Another cognitive architecture that is actively used by many researchers
is SOAR (Laird et al., 1987). SOAR provides an integrated problem solving and
learning architecture. Tasks in SOAR involve goal-oriented search through a hierar-
chy of problem spaces. Learning in SOAR occurs when the results returned from a
subgoal are converted into new productions that can be applied to achieve the same
results under similar circumstances. These learned productions are called chunks,
and they summarize both the goal and state context in which an operator applies.
Chunks are added to the production memory as they are learned, and constitute
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the recognition knowledge in the architecture. In many ways, SOAR is similar to
ACT* and ACT-R, in which productions are used as units of cognitive skills.
Attempts have been made to implement SOAR into a model-based training system
(e.g., see Hill and Johnson, 1993).

Finally, Kintsch’s (1988) construction-integration (CI) theory has also been
implemented as models of planning and skill acquisition (e.g., Doane et al., 2000).
Specifically, Kintsch’s theory presumes that low-level associations between task
instructions and existing long-term skills are constructed and used to constrain
knowledge activation via a constraint-based integration process. The resulting pat-
tern of context-sensitive knowledge activation is referred to as a situation model
and represents the current state of comprehension, which guides the selection of
action. The CI theory of comprehension has been successful in explaining a wide
range of phenomena, and has shown that comprehension is one of the essential pro-
cesses in skill acquisition.

In this article, our focus is on applying the ACT-R theory of skill acquisition to
monitor performance as people interact with a model-based training system. Instead
of modeling how people comprehend task instructions and construct action plans as
in CI models, most ACT-R models assume that instructions are first encoded as
propositions and stored as a set of declarative elements. The ACT-R theory has spe-
cific predictions on how these declarative instructions are strengthened by repeated
exposures, decay with time, and are transformed into procedural skills gradually as
these instructions are retrieved and executed. The main assumption in the ACT-R
theory is that a cognitive skill consists of units of goal-related knowledge. Cognitive
skill acquisition involves the formulation of thousands of rules relating task goals
and task states to actions and consequences. Trainee actions are mapped to the
set of rules by a process called model tracing (described below), which allows the sys-
tem to provide the necessary instruction or feedback to the trainee.

A major challenge in building the model is to understand how people respond to
and learn from immediate feedback on their actions from the training system, and
how it influences the existing declarative and procedural knowledge, and thus the
progress of learning. This problem is by no means the only problem that needs work
for a realistic real-time model-based training system, but we intend to use it to dem-
onstrate the overall framework and our progress toward developing such a system.
To study this problem, we designed an experiment and developed a model that
learned from real-time over-the-shoulder instructions in a dynamic task. Before we
begin describing the system, we will first briefly describe the ACT 5.0 architecture.
Our focus will be on the terminologies and mechanisms that are most relevant to
the description of the training system.

3. The ACT-R architecture

One of the basic assumptions in the ACT-R theory is that human cognition
emerges through an interaction between a procedural memory and a declarative
memory system. In recent development, in addition to the two memory systems,
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the basic architecture of ACT-R 5.0 consists of a set of modules, each devoted to
processing a different kind of information (see Fig. 1). Coordination in the behavior
of these modules is achieved through the central production system. A production is
a condition-action pair, and at any particular production cycle, one production will
be selected and the action will be executed. A production is selected when its condi-
tion side matches the current activities in the modules, but the central production
system is not sensitive to most of the activity of these modules but rather can only
respond to a limited amount of information that is deposited in the buffers of these
modules (i.e., the ‘‘ACT-R buffers’’ in Fig. 1). The core production system recognizes
patterns in these buffers by matching them to the condition sides of the productions
stored in the procedural memory system, and may make changes to these buffers
through the action side of the productions – as for instance, when it makes a request
to perform an action in the motor module, or a request to move attention in the visu-
al field in the visual module. However, once requests are sent to different modules,
activities inside each module can occur in parallel. For example, a single production
can send a request to the visual modules to move attention and another request to
the declarative memory system to retrieve some information. The latencies of moving
attention in the visual modules and retrieving an item from declarative memory are
independent, and thus the processes in each module are sometimes asynchronous. As
will be described later, this mixture of serial and parallel processing is essential for
the model presented in this paper. However, we will first describe the major mecha-
nisms of the ACT-R 5.0 architecture that are most relevant for the model in this
article.

Fig. 1. The ACT-R 5.0 architecture (adapted from http://act-r.psy.cmu.edu/about/). ACT-R has two
major memory systems (the procedural and declarative memory systems) and a set of modules (e.g., visual,
motor, aural, etc.). Coordination of behavior in these modules is conducted through the central
production system (by pattern matching and production execution) and the ACT-R buffers.

W.-T. Fu et al. / Interacting with Computers 18 (2006) 1215–1241 1219



Aut
ho

r's
   

pe
rs

on
al

   
co

py

3.1. Declarative memory

Declarative learning results in the acquisition of various facts such as the fact that
3 + 4 = 7. Access to information in declarative memory is controlled by an activa-
tion process. The activation of an element in declarative memory (a chunk) is a
sum of base-level activation, reflecting its general usefulness in the past, and an asso-
ciative activation, reflecting its relevance to the current context. The activation of a
chunk i (Ai) is defined as

Ai ¼ Bi þ
X

j

W jSji þ e ðactivation equationÞ

where Bi is the base-level activation of the chunk i, the Wj reflect the attentional
weighting of the elements that are part of the current goal, Sji are the strengths of
association from the elements j to chunk i, and e is activation noise sampled from
a logistic distribution. The base-level activation rises and falls with practice and de-
lay according to the equation

Bi ¼ ln
Xn

j¼1

t�d
j

 !
ðbase-level learning equationÞ

where tj is the time since the jth practice of an item. The equation implies that each
presentation of an item has an impact on its activation that decays away as a power
function. In the ACT-R community, .5 has emerged as the default value of the
parameter d over a large range of applications.

Chunks will be retrieved only if their activation is over a threshold. Because acti-
vation values are noisy, there is only a certain probability that any chunk will be
above threshold. The probability that the activation will be greater than a threshold
x is given by the following equation:

P i ¼
1

1þ expððs� AiÞ=sÞ ðprobability of retrieval equationÞ

where s controls the value of e in the activation equation, and is typically set at about
0.4. If a chunk is successfully retrieved, the latency of retrieval will reflect the activa-
tion of a chunk. The time to retrieve the chunk is given as

T i ¼ F e�Ai ðlatency of retrieval equationÞ
where F is a constant that is often set to 1.

3.2. Visual module

The perceptual-motor system of ACT-R 5.0 is based on the EPIC system by
Meyers and Kieras (1997), but there are some major differences. For example, in
the ACT-R visual system, vision is separated into two modules, each with an asso-
ciated buffer: A visual-location (where) and a visual-object (what) module. When a
production makes a request of the where system, the production specifies a series
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of constraints (e.g., a red circle), and the where system returns a chunk representing a
location meeting those constraints (a location of the red circle). If there are multiple
objects satisfying a request to the where system, the location of one will be deter-
mined at random. To find the target object may require a self-terminating search
through the objects satisfying the constraints. To identify an object, the visual system
must send another request to the what system. The what system will be sent a chunk
representing a visual location, with which it can use to shift visual attention to that
location. After visual attention is shifted to the object, the what system will process
the object and returns a chunk representing the object. As an approximation, the
time to shift visual attention is fixed at 185 ms regardless of distance1.

It will be interesting to compare the time to retrieve a chunk and the time to
search for information in the world visually. For example, it would be interesting
to know whether it will be faster to retrieve some information from memory or to
look for the information in the outside world (Fu and Gray, 2000; Gray and Fu,
2004). Fig. 2 shows such a situation, in which the visual search time is fixed at
185 ms, and at the same time the same memory item is being encoded and the acti-
vation strengthened according to the base-level learning equation, and how the
retrieval time decreases as the activation of the chunk increases (see the latency of
retrieval equation). One can see that the retrieval time decreases as the same chunk
is encountered every 2 s. After 50 encounters (i.e., after 100 s), strengthening of the
chunk stops (i.e., the information is taken away). We can see that after this point, the
activation of the chunk decays with time (the rate of decay is controlled by the value
of d, which is set at 0.5), and the retrieval time increases. We can see that in this
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Fig. 2. The activation of a chunk rehearsed every 2 s and its retrieval time. The visual search time is fixed
at 0.185 s. The rehearsal stopped at 100 s.

1 ACT-R assumes that it takes 85 ms to encode the features of a visual object. However, it often requires
the firing of two productions, one for finding the location of the visual object, the second for initiating the
visual encoding. Each production takes 50 ms. Therefore the total time for a visual search is 185 ms.
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example, as the number of previous encounters is more than 20 (i.e., after 40 s of reg-
ular encounters), the retrieval time is faster than the visual search time. However,
when the encounter stops, the retrieval time eventually becomes larger than the visu-
al search time. The dynamic interactions between the accessibility of ‘‘information-
in-the-head’’ and ‘‘information-in-the-world’’ have significant implications in the
model presented later.

3.3. Procedural memory

The procedural memory system basically consists of a set of production rules,
which detect patterns in the buffers of different modules. At any point in time, multi-
ple productions rules might apply, but because of the seriality in production rule exe-
cution, only one can be selected, and this is the one with the highest utility. Utility
values are noisy, and the utility of a production i is calculated as:

U i ¼ P iG� Ci þ e ðproduction utility equationÞ
Where Pi is an estimate of the probability that if production i is chosen the current
goal will be accomplished, G is the value of that current goal, Ci is an estimate of the
cost to accomplish the goal, and s is a random noise sampled from a logistic distri-
bution. The probability that a production will be selected and executed is calculated
by

P i ¼
expðUi=tÞPn
j expðU j=tÞ ðproduction choice equationÞ

where the summation is over all applicable productions and t controls the noise (e) in
the utilities, which is typically set to 0.5.

Another form of procedural learning is called production compilation, which will
take each successive pair of productions and build a single production that has the
effect of both. The process bears some similarity to the chunking mechanism in
SOAR (Newell, 1990) and is basically a combination of composition and procedu-
ralization in Anderson (1983). Production compilation can be illustrated with respect
to a simple paired-associate task. Suppose the following pair of production rules fire
in succession to produce recall of a paired associate:

IF reading the word for a paired-associate test and a word is being attended,
THEN retrieve the associate of the word.

IF recalling for a paired-associate test and an associate has been retrieved with
response N,
THEN type N.

These production rules might apply, for instance, when the stimulus vanilla is pre-
sented: A participant recalls the paired associate vanilla-7 and produces 7 as an
answer. Production compilation collapses these two productions into one. To deal
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with the fact the second production rule requires the retrieval requested by the first,
the product of the retrieval is built into the new production. Thus, ACT-R learns the
following production rule:

IF reading the word for a paired-associate test and vanilla is being attended,
THEN type 7.

This example shows how production rules can be acquired that embed knowledge
from declarative memory. This process speeds up the execution of actions and
requires less access to declarative memory.

After a production New is composed from productions Old1 and Old2, whenever
New can apply Old1 can also apply. The choice between New, Old1, and whatever
other productions might apply will be determined by their utilities. However, the new
production New has no prior experience and so its initial probabilities and costs will
be determined by the Bayesian priors. We will describe how the prior h is set for P,
noting a similar process applies for C. When New is first created, h is set to be 0.
Thus, there is no chance that the production will be selected. However, whenever
it is recreated its h value is incremented according to the Rescorla–Wagner (Rescorla
and Wagner, 1972) or delta rule: Dh = a(P�h) where P is the probability of Old1.
This gradual conversion process is also related to the reinforcement-learning mech-
anism that has shown to be successful in characterizing the procedural learning pro-
cess in the basal ganglia (Sutton and Barto, 1981; Fu and Anderson, 2006). With
practice, if the production rule New is repeatedly created its priori h will converge
on P for the parent Old1. The same will happen for its cost and it will be eventually
tried over its parent. If it is actually superior (the typical situation is that the new
production has the same P but lower C) it will come to dominate its parent. While
our experience with this production rule learning mechanism is relatively limited it
seems that a working value of the learning rate a is .05. This mechanism allows
new instructions to be proceduralized and replace old instructions; however, the
replacement process is slow and is governed by the delta rule. We will show later that
this has implications on how frequently real-time OTS instructions should be given
to create and strengthen new productions that correspond to the OTS instructions.

4. The ACT-R model-based training system

4.1. Model tracing

One of the major challenges for model-based training systems is how to infer the
knowledge states of the trainees by interpreting their actions. This is relatively
straightforward in ACT-R, as knowledge states are represented as productions
and chunks, and changes in knowledge states can be represented as execution of a
sequence of productions. When a trainee interacts with the system, each action exe-
cuted will be monitored and used to update the knowledge states of the model to
align with those of the trainee. This is done through a process called model tracing.
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The model-tracing technique keeps track of trainee actions and figures out the
appropriate productions that lead to the actions, so that appropriate instructional
interventions can be given whenever necessary (see Anderson et al., 1995). In our sys-
tem, trainee actions will be continually monitored and interpreted by searching for
sequences of productions that produce the same behavior. Trainee behavior is com-
pared to the model behavior in the model tracing process, and whenever the trainee
behavior deviates from the model, the process is able to ‘‘work backwards’’ through
the sequence of productions to figure out what leads to the deviation. For example, if
the deviation is due to failure to recognize a piece of crucial information on the
screen, the training system can highlight the information and make the trainee aware
of their lapse.

To be successful, model-based training systems must be carefully engineered to
include production sets sufficient to model all trainee actions within a specific interface
and task. Since a trainee’s actions are often difficult to predict during their interactions
with the system, model tracing often needs to accommodate a large number of alter-
native courses of action in a space of recognizable action sequences. Many methods
have been proposed to simplify this process (e.g., Ritter and Koedinger, 1997). In
our system, a program called PLASTIC (Douglass, 2004) was used to automatically
recognize the sequence of actions that matches different productions. The PLASTIC
program uses a grammar-based pattern matching method, which significantly reduces
the complexities of action sequences (e.g., see Fu, 2001). The idea is that, instead of
using a large number of productions to monitor user actions, the system uses a gram-
mar-based ‘‘template’’ that recognizes user actions. In the current system, PLASTIC
was used to simplify the amount of computations involved in recognizing user actions
and deriving appropriate OTS instructions. Despite the different internal representa-
tions of user actions, the basic technique of model tracing is the same as that in previ-
ous ACT-R-based training systems used in Lisp programming, algebra, or geometry.

4.2. Representation of instructions

The ACT-R theory assumes that goal-independent declarative knowledge initially
enters the training system in a form that can be encoded more or less directly from
instruction or observation. The acquisition of cognitive skill involves the conversion
of this declarative knowledge into production rules through the production compi-
lation process described above. The effect of practice on the accessibility of declara-
tive knowledge can be predicted by the set of equations that govern the activation of
chunks, and that on the acquisition of task-specific production rules can be predicted
by the equations governing the selection of productions as well as the production
compilation process.

In most cognitive models, assumptions need to be made about the structure of the
model. In ACT-R models, this takes the form of assuming what chunks and produc-
tions are available. This creates an additional degree of freedom for the modeler.
Anderson et al. (2004) attempted to eliminate this degree of freedom by introducing
a system that takes the initial set of instructions and converts the set of instructions
into a declarative representation in the model. The set of instructions are then inter-

1224 W.-T. Fu et al. / Interacting with Computers 18 (2006) 1215–1241



Aut
ho

r's
   

pe
rs

on
al

   
co

py

preted by a generic set of production rules. Through the production compilation
mechanism, a set of specific productions that directly perform the task are generated
as the task is practiced. Although this system can only take instructions in a restrict-
ed format, it does provide a way for the model to configure itself based on a given set
of instructions (see Appendix A for the differences between the instructions given to
the subjects and the instructions parsed by the model).

To study the impact of real-time OTS instructions on learning, we designed an
experiment using a real-time dynamic task and measured performance through a
2-day period of training. OTS instructions were given using the model tracing pro-
cess described above. Based on the ACT-R theory of skill acquisition, the model
encodes OTS instructions in real time into the declarative memory system. The
OTS instructions are interpreted by the same set of productions that interpret the
upfront instructions. In other words, the model processes the upfront and OTS
instructions the same way, but as we will show later, the introduction of OTS
instructions has some interesting changes to behavior that make them distinct from
that of upfront instructions.

4.3. Toward a real-time model-based training system

Most model-based training systems involve a static model of competence of the
user, and thus lack the flexibility to adapt to the dynamic learning process of the
user. Specifically, most competence models do not take into account the impact of
real-time OTS instructions, and therefore fail to effectively predict when and how
OTS instructions should be presented to facilitate skill acquisition. Fig. 3 shows
the overall structure of the proposed real-time model-based training system. User
actions are monitored by the system through the model tracing process, and real-
time OTS instructions are given at the appropriate time to facilitate learning. The
main idea is to have a flexible ACT-R model that adapts to user behavior during
the training process by predicting the impact of the OTS instructions on behavior.
To preview our results, our experiment show that OTS instructions are more useful
during the early stage of learning where the instructions will facilitate the procedu-
ralization process, but they often slow down performance as they often divert atten-
tion away from the main task. Our results highlight the importance to have a flexible
model that predicts when these OTS instructions should be given to facilitate the
long-term training effectiveness.

Model-Tracing ACT-R Model

Training System:
Task

User

Real-Time
OTS

Instructions

Fig. 3. The overall structure of the real-time model-based system. OTS, over-the-shoulder.
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5. The task: the anti-air warfare coordinator

The current task was constructed based on the Georgia Tech Aegis Simulation
Program (GT-ASP, Hodge et al., 1995). GT-ASP is a tactical decision-making com-
puter game that simulates tasks facing an anti-air warfare coordinator (AAWC) on
board a US Navy cruisers and destroyers. In our task, a participant assumes the role
of an AAWC, which includes monitoring a radar screen for unknown aircraft,
requesting and collecting information regarding the unknown aircraft, and updating
the identity of the aircraft. The task we used is a simplified version of the GT-ASP
(we refer to it as the CMU-ASP task henceforth), and a cognitive model was con-
structed to predict learning behavior and monitor participants’ actions though the
model tracing process.

The radar screen of the CMU-ASP task (Fig. 4) consists of three major areas.
First, the radarscope shows various air tracks. Vectors emanating from the aircraft
indicate speed and course. The AAWC is on a ship at the center of the radarscope
(called ANZIO). The AAWC moves the mouse within the scope and ‘‘hooks’’ a tar-
get airplane by clicking the mouse button. This hooking is necessary whenever the
AAWC tries to update identity of unknown aircraft. Second, there is a group of

Fig. 4. The display in the CMU-ASP task.
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information boxes on the left of the screen where the participant can get information
on tracks. Third, the menu panel shows the current bindings of the function keys (F1
to F12 on the computer keyboard) that are used to issue commands. The AAWC
spends the majority of the time in identifying the intent (friendly or hostile) of tracks
on the screen and their air type (e.g., strike, or commercial). It is this identification
task that the experiment focuses on. We will focus on the first unit task in the iden-
tification task – how participants select the next track – with and without the over-
the-shoulder instructions. This unit task involves a selection and a visual search com-
ponent, both of which are subject to significant improvement with the OTS instruc-
tions. We will elaborate on this aspect below.

5.1. Instructions

Before the experiment participants were asked to memorize a set of initial instruc-
tions (see Appendix A) that were sufficient to finish the task. Half of the participants
were assigned to a group where OTS instructions were given (instruction group) and
the other half did not receive any OTS instructions (no-instruction group). The OTS
instructions were given right after the participants finished a unit task (e.g., after
hooking a track or after identifying a track as a commercial profile, an example will
be given later). We will focus on the OTS instructions that were given right after par-
ticipants had hooked a track.

Participants were told that their scores depended on the importance of the tracks
classified, but the initial set of instructions did not explain how the importance of a
track could be evaluated. After a track had been identified, a score would be dis-
played in the middle information box on the left of the screen as shown in Fig. 4.
The score was calculated by the following final score equation (not known to the
participants):

Identification score ¼ ðspeed þ 3� ð512� rangeÞÞ � at-me:

ðFinal Score EquationÞ

Hence, the score was high if the speed was high, if it was close to the center of the
screen (range was small), or if it was flying towards the ship. The at-me value ranges
from 1.0 to 3.0, and it depends on the difference between the course of the track and
the bearing of the track measured from the ANZIO. A small difference implies that
the track is flying towards the ship, and the at-me value will be high. Since the score
decreases linearly over time (from 100% to 25% during the 6-min trial) and there is
often insufficient time to classify all tracks in 6 min, the final scores (calculated as the
sum of all time-weighted identification scores) depend critically on whether partici-
pants can classify tracks in the order of importance.

At any point in time, the identification scores of all unidentified tracks were cal-
culated and tracks were ranked according to their scores. In the instruction group,
after the participant hooked a track, if the hooked track was less important than
20% of all unidentified tracks the system would be triggered to give an audio OTS
instruction. The most important track on the screen would be highlighted, and
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instruction would be given to inform the participant why the highlighted track was
more important (e.g., ‘‘This track was fast and directly approaching the ANZIO’’).
Participants could then learn from the instructions and improve future performance
by selecting the most important unidentified tracks.

6. The experiment

In the process of developing a model-based training system, we conducted an
experiment to investigate the impact of OTS instructions to performance at different
stages of learning. Thirty-two participants were recruited for a 2-day experiment.
Half the participants were assigned to the instruction group and the other half to
the no-instruction group. On the first day they were given the set of upfront instruc-
tions that taught them how to hook and identify a track, and how to use the F-keys
to input the classifications of the tracks. On the first day participants were asked to
memorize the set of 13 upfront instructions and were given a paper test afterwards.
In the paper test, subjects were asked to fill in the crucial information in the instruc-
tions (see Appendix A), and the order of the instructions was randomized. When
subjects failed to fill in any of the crucial information, they were asked to study
the instructions again, and they were given another test afterwards. Subjects were
required to correctly fill in all the instructions and therefore had memorized all
the upfront instructions before they began. In other words, during the task, learning
was predominately reflected by to extent to which these instructions were procedu-
ralized (i.e., transforming knowledge from declarative to procedural form). The
upfront instructions were therefore assumed to be strongly encoded declaratively
when subjects began.

Subjects were given 10 6-min scenarios. On the second day they were tested on 10
more. Each of the 20 scenarios was constructed by randomly placing 40 tracks on the
screen. Twenty of these tracks satisfied a commercial profile and 22 gave EWS sig-
nals and could be classified on those bases (see instructions in Appendix A). These
two sets intersected such that 12 could be classified on either basis, and eight tracks
that could not be classified on either basis. The 20 scenarios were randomly present-
ed to each subject, but the actual order was recorded so that the same order can be
presented to the model.

In the instruction group, OTS instructions were given except the first two and the
last two scenarios given on each of the two days. In other words, in the instruction
group, participants were given two no-instruction trials, followed by six instruction
trials, then two more no-instruction trials, on each of the two days of experiment.
OTS instructions were given aurally through the computer speakers.

7. The model

The model uses the same set of parameters as described in Anderson et al. (2004),
and uses the same declarative-to-procedural system to process the initial set of
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i.e., instructions are initially represented as declarative knowledge and are retrieved
when needed. The OTS instructions are also subject to the same declarative-to-pro-
cedure conversion as the initial set of instructions. However, because subjects were
asked to memorize all the upfront instructions and they all passed the recall test,
the OTS instructions are assumed to be weakly encoded compared to the upfront
instructions. To preview our results, we did find that the learning of the OTS instruc-
tions were slower. Besides, when the OTS instructions were absent, performance of
the subjects declined quickly, suggesting that the strength of the OTS instructions
decayed quickly before they were proceduralized.

To derive the possible track selection strategies in the model, after the task we asked
participants to freely write down the criteria they used to select the next track. The top
three criteria were shown in Table 1. When subjects reported that they used the direc-
tion of the track as a criterion, they were put under the at-me group; when they report-
ed that they used the distance from the ANZIO as a criterion, they were put in the
range group; when the reported that they used the length of the vector or how fast
the track was flying as a criterion, they were put in the speed group. Two independent
coders conducted the grouping and there was no disagreement between the coders.
There were four more criteria reported (e.g., whether the track was closer to the top
or bottom of the screen), but none of them was reported by more than two partici-
pants. We considered these criteria more random than systematic and have decided
not to include them in the model. It shows that participants were able to learn to attend
to the right features in the instruction group. It is interesting that even with no instruc-
tion, participants tended to choose tracks that were closer to the ANZIO (range), and
apparently some of them learned (presumably from the scores they received after iden-
tifying each track) that at-me and speed were also important features.

We represented each of the above criteria as a ‘‘search-factor’’ and they were cre-
ated as declarative chunks when the first over-the-shoulder instruction was given.
The search-factors provided constraints to the visual search process. For example,
a ‘‘fast’’ search-factor commands a search for a track that has a long vector emanat-
ing from the track, and a ‘‘range’’ search-factor commands a search for a track that
was close to the ANZIO, and so on.

When the task began, since no search-factor was available, the model started to
select the track closest to the ANZIO. This assumption2 was based on the apparent

Table 1
The number of participants reported that they used the criteria to select the next track in each group

Instruction No-instruction

At-me 15 4
Range 12 10
Speed 15 4

2 This is obviously a post-hoc assumption. Ideally one would have a model that predicts behavior before
data are collected, but apparently at this stage we cannot (see also footnote 3).
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tendency for participants to select tracks closer to the ANZIO in both groups (see
Table 1). Another assumption was that participants would tend to minimize the
search time required to select a track, so that they could classify as many tracks
as possible in each trial. Under this assumption, when no additional information
is available, the best strategy is to select the track closest to the track that has just
been classified, i.e., a nearest-neighbor strategy. This will minimize both the visual
search time and the mouse movement time3.

In order for the model to respond to the OTS instructions, we need to provide a
mechanism so that goal-directed activities (i.e., production firings) in the model can
be interrupted by stimuli in the outside world. We adopted a ‘‘buffer-stuffing’’
approach to this problem. Specifically, when an OTS instruction is given, the instruc-
tion will be stored automatically in the buffer of the aural module (which is in par-
allel to and occurs independently of the central production execution mechanism).
At each production cycle (execution of a single production), a production will check
whether the buffer of the aural module is filled, and if so, the production will fire (see
Fig. 5). This production will also create a new goal of moving attention to this audio
signal, and stores the current goal as part of the new goal so that in case the model
chooses not to follow the instruction, it can resume the current goal. After attention
is moved to the audio signal, the content of the audio signal can be interpreted. If the
audio signal is an instruction given by the training system, the model will interpret
the instruction (we chose not to model the cognitive complexities involved in the nat-
ural language processes involved in the interpretation; instead, the interpretation is
done by a lisp function). If the audio signal is not an instruction (for example, it

3 We have attempted to eliminate these assumptions by having the model randomly picked a track to
identify, but the model performed much worse than subjects in the initial trials.

If aural buffer is filled, 
then create a goal to attend to audio info
and remember the current goal

Move attention to aural location
and interpret the audio info 

If it is an instruction,
then create DM chunk for each factor
given by the instruction
(e.g. speed, range, or at-me)

Hook and classify the track
recommended by the tutor

If it is NOT an instruction,
then resume the previous goal

If aural buffer is filled, 
then create a goal to attend to audio info
and remember the current goal

Move attention to aural location
and interpret the audio info 

If it is an instruction,
then create DM chunk for each factor
given by the instruction
(e.g. speed, range, or at-me)

Hook and classify the track
recommended by the tutor

If it is NOT an instruction,
then resume the previous goal

Fig. 5. How the model responds to the over-the-shoulder instruction through the aural buffer. (DM,
declarative memory.)
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could be informing the radar signal returned from the aircraft), the model will
resume the previous goal and activities. This ‘‘attention switching’’ mechanism will
slow down performance. In fact, others have successfully showed how this buffer-
stuffing mechanism can explain the interruption cost during task switching (e.g.,
Gray and Schoelles, 2003).

When an instruction is detected, the interpretation process generates search-fac-
tors that explain why the track highlighted is important. There are three search-fac-
tors given by the over-the-shoulder instruction: speed, range, and at-me. For
example, if the instruction is: ‘‘This fast track is coming at the ANZIO and needs
attention’’, then the interpretation process will generate the ‘‘fast’’ and ‘‘at-me’’
search-factors. For each of the search-factors generated, the model will create sepa-
rate chunks representing them in declarative memory. If there is already an identical
chunk in declarative memory when the new chunk is created, the chunks will be
merged and the activation of the chunk will be increased and its likelihood of being
retrieved in the future increases.

After the model repeatedly processes the over-the-shoulder instructions, the acti-
vation of the search-factor chunks will be strengthened and the chunks will eventu-
ally be retrieved. These search-factors affect the selection of the next track through
repeated cycles of retrieval and visual search (see Fig. 2). When the model starts
to select a track, it will first try to retrieve a search-factor. If a search-factor, for
example, speed, is retrieved, the model will search for a fast track on the radar
screen. At the same time, retrieval for the second search-factor is initiated. The visual
search and the retrieval compete against each other. If the visual search process finds
a track before retrieval finishes, the model will satisfy on the track and stop search-

Retrieve a factor

If Factor retrieved then
Search for track and
Retrieve 2nd factor

If 2nd Factor retrieved then
Search for track and
Retrieve 3rd factor

If 3rd Factor retrieved then
Search for track

If Track Found, hook the Track

If Track Found, hook the Track

If Track Found, hook the Track
competing

competing

Retrieve a factor

If Factor retrieved then
Search for track and
Retrieve 2nd factor

If 2nd Factor retrieved then
Search for track and
Retrieve 3rd factor

If 3rd Factor retrieved then
Search for track

If Track Found, hook the Track

If Track Found, hook the Track

If Track Found, hook the Track
competingcompeting

competing

Fig. 6. The model selects the next track retrieving factors that guides the visual search.
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ing. However, if retrieval finishes first, a new visual search will be initiated based on
the two search-factors retrieved. For example, if the first search-factor is speed and
the second factor is range, then the model will search for a track that is both fast and
close to the ANZIO. At the same time, retrieval for the third search-factor will be
initiated. If, again, a track is found based on the two search-factors before the
retrieval for the third search-factor finishes, the model will proceed to hook and iden-
tify the track. If retrieval finishes first, a new search will be initiated based on the
three search-factors. At this point, since all factors have been retrieved, the model
will proceed to hook the track when a track is found. The flow diagram in Fig. 6
therefore shows how top-down influence of instructions can be incrementally com-
bined with the visual search process. The competition of the retrieval and visual
search process allows the model to incrementally improve the selection of tracks.
The production compilation process will also compile the search-factors into differ-
ent specific production. For example, if the ‘‘speed’’ search factor is repeatedly
retrieved and used, the specific production for searching for a fast track will be cre-
ated the first time and strengthened subsequently.

8. Results

Fig. 7 shows the final scores obtained after each scenario by the participants and
the model in both the instruction and no-instruction groups. The final scores are the
total scores obtained for all tracks identified during each 6-min scenario. The differ-
ence between the two groups were not significant (t(15) = 0.95, p = 0.36). The model
was able to fit the data well (R2 = 0.92). Participants improved steadily across trials.
The final scores dropped slightly at scenario 11, when the participants came back on

0
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10000

15000
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25000

30000

35000

40000

1 3 5 7 9 11 13 15 17 19

Scenarios

Final scores

Instruction (obs) No instruction (obs)

Instruction (model) No instruction (model)

Fig. 7. Final scores obtained by the participants and the model after each scenario. Note that the second
day starts on scenario 11. (obs, observed data from participants.)
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the second day. In general, the improvements of final scores of the model were sim-
ilar to those of the participants.

Fig. 7 shows that there was no significant difference in total scores between the
instruction and no-instruction groups. However, Fig. 8 shows that the number of
identifications made in each scenario was actually higher for the no-instruction
group than the instruction group (t(15) = 3.64, p < 0.01). However, the difference
was significant only on the first day (t(15) = 5.06, p < 0.001), but not on the second
day (t(15) = 0.73, p = 0.36). Apparently the over-the-shoulder instructions had slo-
wed down the participants during the first day. This is most obvious in scenario 3,
where the over-the-instructions were first given. Combining the results from Figs.
7 and 8, participants in the no-instruction group had lower scores per each track they
identified. In other words, participants in the instruction group had identified more
important tracks than the no-instruction group. It suggests that although partici-
pants (and the model) were slower performing the task, they were able to choose
more important tracks and obtained comparable final scores as participants in the
no-instruction group.

Participants sped up steadily across scenarios, except in scenario 11 when partic-
ipants came back on the second day. The difference between the instruction and no-
instruction group also became smaller with practice. It seemed that participants in
the no-instruction group reached asymptotic performance earlier than the instruc-
tion group. From the analyses in Anderson et al. (2004), during the early stages of
learning, time to identify a track depended mostly on cognitive components. At later
stage of learning, the time to identify a track depended mostly on perceptual-motor
components. The difference between the two groups indicates that the over-the-
shoulder instructions may require more cognitive operations to process the instruc-
tions. The smaller difference at later stage of learning indicates that the processing of
instructions had also sped up. The model was able to capture the patterns of data
well in both the instruction and no-instruction groups (R2 = 0.96). The speed-up
was captured by the production compilation process in the model, in which both
upfront and OTS instructions were slowly compiled into productions with
experience.
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Fig. 8. The number of identifications made in each scenario. (IDs, identifications.)
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To further investigate the effect of the OTS instructions, we derived a measure of
how well participants were able to identify the tracks in the order of their importance
(i.e., identify the most important first and least important track last). In each scenar-
io, we calculated the Pearson Rank correlation between the scores of the tracks and
the order of their identification. For example, if tracks A, B, and C are identified one
after the other and the scores obtained are 900, 800, and 600, respectively, then the
correlation between the two arrays (900, 800, 600) and (1, 2, 3) is calculated to be
�0.98. However, if the tracks were identified in the order of A, C, and B, then the
correlation between the two arrays (900, 600, 800) and (1, 2, 3) will be �0.334. In
other words, the more negative the correlation, the better the participant is able to
identify the tracks in the order of their importance5.

Fig. 9 shows the Peason Rank correlations across the scenarios for both groups.
The correlations for the instruction group were lower than the no-instruction group
throughout the 20 scenarios. One may wonder whether the fewer number of identi-
fications may have contributed to the lower correlations (more negative) in the
instruction group. However, after checking the data we found that the differences
were too big to be caused by the fewer number of identifications (except perhaps
in the first two scenarios). In fact, the difference in the number of tracks identified
between the two groups was not significant (see Fig. 8) in the second day, the differ-
ence in the correlation measure remained large.

The effect of instructions can also be assessed from Fig. 9 at scenarios 9–12, and
scenarios 19 and 20 for the instruction group, during which OTS instructions were

4 In the actual task, the scores will not be identical when tracks were identified in different orders because
scores decrease linearly with time.

5 The correlation between an interval and an ordinal scale may not reliably reflect the relationship
between the two variables if they are highly skewed. However, in our case, the skewness is limited by the
design of the task: the scores of a single track were limited to a range from 100 to 1000 and the increments
seldom fell below 30.
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Fig. 9. The correlations between scores of the track identified and their order of identification. The more
negative the correlation, the better the identification was in a decreasing order of scores.
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not given. The instruction group shows some reduction in the magnitude of their cor-
relations but still show stronger (more negative) correlations than the uninstructed
group. The model captures the data well (R2 = 0.95). The model exhibited the same
decreases of correlations (less negative) when the OTS instructions were absent as
shown by the human data. This shows that the model was able to respond and learn
from the OTS instructions as the participants.

The nearest-neighbor strategy also did a good job capturing the small learning
curve in the no-instruction group. Since the strategy always started with the track
closest to the ANZIO, it captured the general tendency to classify tracks closer to
the ANZIO first as reported by the participants. Since tracks close to the ANZIO
tended to have a high importance, the general tendency therefore led to the sharp
decrease of correlation during early trials as the number of identifications increased.
However, after tracks close to the ANZIO were identified, the order of identification
became more random than systematic, therefore the correlation asymptote at a much
lower level (less negative) than that of the instruction group.

To further investigate the impact of each of the search-factors (at-me, range, and
speed) across scenarios, we analyzed each of the OTS instructions given and counted
the number of times each of the search-factors was emphasized in these instructions.
Fig. 10 (a) shows the mean number of OTS instructions and Fig. 10 (b) shows the
percentages of the search-factors emphasized in the OTS instructions when subjects
performed the task. We can see that, consistent with the correlation measures shown
in Fig. 9, the number of OTS instructions decreased across scenarios, indicating that
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Fig. 10. (a) The mean number of OTS instructions and (b) the mean percentage of each search-factor in
the OTS instructions across the 20 scenarios.
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participants became increasingly better at prioritizing the order of identifications (as
an OTS instruction was given only when a track that was less important than 20% of
all unidentified tracks was hooked). Fig. 10 (b) shows that on the first day, most of
the OTS instructions were on the range factor, suggesting that participants paid less
attention to important tracks closer to the ANZIO. However, the percentage of OTS
instructions that emphasized the range factor decreased while the other two factors
increased towards the end of the first day. On the second day, the percentages of all
three factors were roughly the same. The trend showed how the OTS instructions
impact the choice of the next track: subjects learned to adapt to the weight of the
three search-factors as defined by the final score equation through repeated OTS
instructions.

Fig. 11 shows the correlations between the values of each of the search-factors of
the track identified with its order of identification6. In other words, it is similar to
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Fig. 11. The correlations between the values of the track in each of the search-factors and its order of
identifications across the 20 scenarios in the (a) no-instruction and (b) instruction group. The range values
were multiplied by �1 so that they can be compared to the other search-factors. Obs, observed from
participants; pred, predicted by the model.

6 For example, if subjects began the task and identified track A, B, and C. Then the orders of
identification for tracks A, B, and C are 1, 2, and 3, respectively.
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Fig. 9 except that we used the values of each of the search factor instead of the com-
bined scores. For both the no-instruction and instruction groups, participants paid
most attention to range throughout the 20 scenarios, followed by at-me and Speed7.
However, the correlations were much stronger for the instruction group for all three
search-factors. The high percentage of the range factor in the OTS instructions (see
Fig. 10) had provided the strongest impact on behavior, as shown by the strong cor-
relations in Fig. 11 (b). The impact on range was maintained even in scenarios when
OTS instructions were not available However, for at-me and Speed, the correlations
were much weaker during scenarios 9 through 12, and scenarios 19 and 20, suggest-
ing that the impact on behavior was relatively weak: participants paid attention to
these two factors when OTS instructions were given, but not when the OTS instruc-
tions were taken away.

After inspecting the model, we found that since there were more OTS instructions
on range initially, the model had sufficient experiences using range as a search-factor
to look for the next track, and the resulting new production created by the produc-
tion compilation process had a high enough utility value to be selected in later sce-
narios. Since the utility of the new production does not decay with time8, the range
search-factor was used consistently even in scenarios when the OTS instructions were
not available. On the other hand, we found that the model did not have enough expe-
riences to fully proceduralize the at-me and Speed search-factors. Since the strength
of the declarative representation of these two factors decayed when the OTS instruc-
tions were not available, retrievals of these factors were less likely to be included in
the visual search (see Fig. 2).

The pattern of results suggests that it is equally important to predict when to pro-
vide the appropriate OTS instructions to facilitate short-term and long-term perfor-
mance. In our study, the criterion under which an OTS instruction was given was
fixed (i.e., when participants hooked a track that was 20% less important that all
the unidentified tracks), but our results suggest that it is important to have a flexible
model-based training system that adapts to different stages of learning of the trainee.
For example, it is possible to monitor the proceduralization process to determine
when additional OTS instructions should be given more often (when the instructions
have not been fully proceduralized) or less often (when the instructions have already
been fully proceduralized, and OTS instructions may slow down short-term perfor-
mance without facilitating long-term performance).

9. General discussion

We found that participants were able to learn from over-the-shoulder instructions
and paid attention to more important tracks. To understand how people learned from

7 The use of range as a factor even in the no-instruction group provided support for the assumption of
the model that people tend to select the first track near the ANZIO.

8 In ACT-R utility value may decay through a similar decay process in chunk activation, but we decided
not to use them as they add additional complexity to the model and it is not the focus of our current
modeling effort.
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these instructions, we developed a mechanism that allows the system to deliver OTS
instruction and the model to learn from the instructions. Instructions were represented
as declarative memory traces. Repeated instructions strengthened these memory traces
to make them more accessible when needed. A mechanism is constructed that allows
visual search to be incrementally improved and declined based on the strengths of
the memory traces of the top-down instructions. The ability to search for important
tracks improved as the strengths of these memory traces increased, and the production
compilation process created and strengthened new production for better search. How-
ever, when these instructions were not fully proceduralized, the strengths of the mem-
ory traces of the instructions would decay, leading to the decline in performance.

The treatment of the OTS instructions is the same as the initial instructions,
except that (a) they take time away from the processing, (b) their effects tend to decay
quite rapidly in the initial phase of training, and (c) their effects on training dimin-
ishes as the OTS instructions are proceduralized in the late stages of training. We
realistically model the slow learning of the OTS instructions whereas we assume that
the initial instructions are well encoded. Intuitively, one might speculate that OTS
instructions might be easier to learn as they are presented right in the exact same sit-
uation. As least from our data, although the OTS instructions apparently had a large
impact on short-term performance, they did take time away from the task and their
effect seemed to decay quite rapidly before they were fully proceduralized.

Model-based training systems have been successfully applied in relatively static
task domains such as algebra or geometry. The current line of work attempts to
transfer the technology of model-based training systems out from the protected
classroom or laboratory to a real-world, complex, and dynamic task. The task
requires all forms of learning and all buffers in ACT-R to interact and thus is a good
test bed for the architecture. Although ACT-R seems to be a good learning system
capable of tracking the skill acquisition process, it does not have any ‘‘built-in’’
mechanisms for interpreting or comprehending instructional texts that other models
such as those based on the Construction-Integration theory (Kintsch, 1988) are
capable of. Indeed, the comprehension often seems to be an integral part of skill
acquisition or planning (e.g., Doane et al., 2000; McNamara et al., 1996) that our
system has not yet focused on. Future integration of these capabilities by combining
the merits of these systems with the current system will be promising.

The current system is of course far from a perfect training system. To begin with,
we have provided only a model of aggregate behavior, which is known to be good for
capturing general cognitive phenomena, as we intended to do here. The limitation of
model that fits aggregate data is that the conclusion only applies to the general trend
of acquisition. Thus, we are not able to infer, for example, why an individual may
learn better or worse than others. To fully utilize the capabilities of the system, it is
desirable to develop models that closely track the skill acquisition process of individ-
uals. However, fitting individual data requires a much larger sample size and a much
more careful control of variables that contribute to individual differences (e.g., Engle
et al., 1999). For example, if factors such as working memory capacity are believed to
be the underlying causes of individual differences in learning, the general approach is
to first conduct independent measures of the factors for each individual. The major
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challenge is how one can construct models and search for parameters that reflect the
effects of different levels of the factors to learning performance. The advantage of this
approach is that in addition to predicting individual learning performance, it also
provides explanations of why certain individuals may, for example, be better learners
than others based on the factors identified during the analyses of individual differenc-
es. The intelligent training system can therefore provide instructions that are specific
to the ‘‘cognitive profile’’ of the individual. This feature, although desirable, clearly
requires more careful empirical testing and modeling effort in the future.

The concept of human-computer symbiosis started around the 1960s and has since
set an agenda to give ‘‘machine organic qualities at the same time that a parallel pro-
gram in psychology mechanized our understanding of our minds and bodies’’ (Crow-
ther-Heyck, 2005). As the theme of this special issue, symbiotic performance between
humans and intelligent system demands better communications that enable humans
and computers to interact in real time via various techniques. In this paper, we show
that a combination of a cognitive model of skill acquisition and a simple action pro-
tocol tracer provides close connection between the learner and the training system by
tracking and interpreting actions in real-time. Through the process of tracking and
interpretation, the intelligent system communicates with the learner by inferring func-
tional goal and intention of the learner, and provides real-time instructional materials
to augment the skill acquisition process. We hope that the work described in this arti-
cle has suggested some of the methods and insights that may encourage future
research on better communications between humans and machines.

Appendix A

Rules for the GT-ASP Experiment
(In parenthesis are the exact instructions that were given to the ACT-R model, the

underlined are the crucial information that was left out for subjects to fill in during
the test.)

1. The task is to identify unidentified tracks. Unidentified tracks are half squares
with vectors emanating from them. One should hook (click on) such tracks and
then go through the sequence of identifying them. (To identify-tracks first
look-for a track that is ‘‘half-square’’ then hook the track then id-sequence
the track and then repeat.)

2. One way to identify a track is to confirm that it is flying at a commercial alti-
tude and speed and then record it as friendly primary id and non- military air
id. (To id-sequence a track first altitude-test then speed-test and then record it
as ‘‘friend’’ ‘‘non- military’’.)

3. The other way to identify a track is to request its EWS identity, and then clas-
sify the track according to that identity. (To id-sequence a track first ews the
track for a ews-signal and then classify the track according to the ews-signal.)

4. To confirm that a plane is flying at the commercial altitude, look in the upper left,
search down for ‘‘alt’’, read the value to the right, and confirm that it is more than
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25,000 and less than 35,000. (To altitude-test first seek ‘‘upper-left’’ and then
search-down for ‘‘alt’’ at a location then read-next from the location a value then
check-less 25000 than the value and then check-less the value than 35000.)

5. To confirm that a plane is flying at the commercial speed,look in the upper left,
search down for ‘‘speed’’, read the value to the right, and confirm that it is more
than 350 and less than 550. (To speed- test first seek ‘‘upper-left’’ and then
search-down for ‘‘speed’’ at a location then read-next from the location a value
then check-less 350 than the value and then check-less the value than 550.)

6. To request the EWS identity of a track, select the ‘‘ews’’ key, then select ‘‘query
sensor status’’ key, and encode the value that you are told. (To ews a track for
a ews-signal first select ‘‘ews’’ then select ‘‘query sensor status’’ and then
encode-ews the ews-signal.)

7. To classify a track whose EWS identity is ARINC record it as ‘‘friendly’’ pri-
mary id and ‘‘non- military’’ air id. (To classify a track according to a ews-sig-
nal first match the ews-signal to ‘‘arinc564’’ and then record it as ‘‘friend’’
‘‘non- military’’.)

8. To classify a track whose EWS identity is APQ record it as hostile primary id
and strike air id. (To classify a track according to a ews-signal first match the
ews-signal to ‘‘apq’’ and then record it as ‘‘hostile’’ ‘‘strike’’.)

9. To classify a track whose EWS identity is APG record it as friendly primary id
and strike air id. (To classify a track according to a ews-signal first match the
ews-signal to ‘‘apg’’ and then record it as ‘‘friend’’ ‘‘strike’’.)

10. To classify a track whose EWS identity is negative treat it as unclassifiable. (To
classify a track according to a ews-signal first match the ews-signal to ‘‘nega-
tive’’ and then mark-node the track.)

11. To record a primary id and a secondary id select the following sequence of
keys: ‘‘track manager’’, ‘‘update hooked track’’, ‘‘class/amp’’, ‘‘primary-id’’,
the primary id, ‘‘air-id’’, the air-id, ‘‘save’’ and then you have succeeded. (To
record a primary-id and a air-id first select ‘‘track manager’’ then select ‘‘up-
date hooked track’’ then select ‘‘class/ amp’’ then select ‘‘primary id’’ then
select the primary-id then select ‘‘air id amp’’ then select the air-id then select
‘‘save changes’’ and then success.)

12. To select a key, find where it is in the menu and hit the corresponding F-key.
(To select a option first find-menu the option at a location and then hit-key
corresponding to the location.)

13. To find where an item is in the menu, look to the lower left and search to the
right for the term. (To find-menu a option at a location first seek ‘‘lower-left’’
and then search-right for the option at a location.)

References

Anderson, J.R., 1983. The architecture of cognition. Harvard University Press, Cambridge, MA.
Anderson, J.R., Bothell, D., Byrne, M.D., Douglas, S., Lebiere, C., Qin, Y., 2004. An integrated theory of

the mind. Psychological Review 111 (4), 1036–1060.

1240 W.-T. Fu et al. / Interacting with Computers 18 (2006) 1215–1241



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R., 1995. Cognitive tutors: lessons learned. The
Journal of the Learning Sciences 4, 167–207.

Doane, S.M., Sohn, Y.W., McNamara, D.S., Adams, D., 2000. Comprehension-based skill acquisition.
Cognitive Science 24 (1), 1–52.

Crowther-Heyck, H., 2005. Mind and network. IEEE Annals of the History of Computing 27, 103–104.
Douglass, S. 2004. Using the plastic framework to augment scenario-based training systems with

instructional agents. In: Proceedings of the 48th Annual Meeting of the Human Factors and
Ergonomics Society, pp. 2524–2528.

Engle, R.W., Tuholski, S.W., Laughlin, J., Conway, A.R.A., 1999. Working memory, short-term memory
and general fluid intelligence: a latent variable model approach. Journal of Experimental Psychology:
General 128, 309–331.

Fu, W.-T., 2001. ACT-PRO action protocol analyzer: a tool for analyzing discrete action protocols.
Behavior Research Methods, Instruments, and Computers 33 (2), 149–158.

Fu, W.-T., Anderson, J.R., 2006. From recurrent choice to skill learning: a reinforcement-learning model.
Journal of Experimental Psychology: General 135, 184–206.

Fu, W.-T., Gray, W.D., 2000. Memory versus perceptual-motor tradeoffs in a blocks world task. In:
Proceedings of the Twenty-second Annual Conference of the Cognitive Science Society. Erlbaum,
Hillsdale, NJ, pp. 154–159.

Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H., Ventura, M., Olney, A., Louwerse, M.M., 2004. Auto
tutor: a tutor with dialogue in natural language. Behavioral Research Methods, Instruments, and
Computers 36, 180–193.

Gray, W.D., Fu, W.-T., 2004. Soft constraints in interactive behavior: the case of ignoring perfect
knowledge in-the-world for imperfect knowledge in-the-head. Cognitive Science 28 (3), 359–382.

Gray, W.D., Schoelles, M.J., (2003). The nature and timing of interruptions in a complex cognitive task:
empirical data and computational cognitive models. In: Proceedings of the 25th Annual Meeting of the
Cognitive Science Society. pg 37.

Hill Jr., R.W., Johnson, W.L., (1993). Designing an intelligent tutoring system based on a reactive model of
skill acquisition. Proceedings of the International Conference on AI and Education, Edinburgh, 1993.

Hodge, K.A., Rothrock, L., Kirlik, A.C., Walker, N., Fisk, A.D., Phipps, D.A., Gay, P.E. (1995).
Trainings for tactical decision making under stress: towards automatization of component skills.
(HAPL-9501). Atlanta, GA: Georgia Institute of Technology, School of Psychology, Human
Attention and Performance Laboratory.

Kintsch, W., 1988. The use of knowledge in discourse processing: a construction-integration model.
Psychological Review 95, 163–182.

Laird, J.E., Newell, A., Rosenbloom, P.S., 1987. Soar: an architecture for general intelligence. Artificial
Intelligence 33 (3), 1987.

McNamara, D.S., Kintsch, E., Songer, N.B., Kintsch, W., 1996. Are good texts always better? interactions
of text coherence, background knowledge, and levels of understanding in learning from text. Cognition
and Instruction 14, 1–43.

Meyers, D.E., Kieras, D.E., 1997. A computational theory of executive cognitive processes and multiple-
task performance. Part 1. Basic mechanisms. Psychological Review 104, 2–65.

Newell, A., 1973. Production systems: models of control structures. In: Chase, W.G. (Ed.), Visual
information processing. Academic Press, New York, pp. 463–526.

Newell, A., 1990. Unified theories of cognition. Harvard University Press, Cambridge, MA.
Ritter, S., Koedinger, K.R., 1997. An architecture for plug-in tutoring agents. In: Journal of Artificial

Intelligence in Education, 7 (3/4), 315–347. Charlottesville, VA: Association for the Advancement of
Computing in Education.

Rescorla, R.A., Wagner, A.R., 1972. A theory of Pavlovian conditioning: variations on the effectiveness of
reinforcement and nonreinforcement. In: Black, A.H., Prokasy, W.F. (Eds.), Classical conditioning:II.
current research and theory. Appleton-Century-Crofts, New York, pp. 64–99.

Sleeman, D., Brown, J.S., 1982. Intelligent Tutoring Systems. Academic Press, New York.
Sutton, R.S., Barto, A.G., 1981. Toward a modern theory of adaptive networks: expectation and

prediction. Psychological Review 88, 135–170.

W.-T. Fu et al. / Interacting with Computers 18 (2006) 1215–1241 1241


